Abstract
An artificial neural network (ANN) approach is used to determine the thermal conductivity of Al2O3 – Cu / EG with an equal volume (50:50). For this purpose, a mixture of Al2O3 and Cu (50:50) nanoparticles are added in to EG at various concentrations of 0.125 to 2.0 at T=25 to T=50 °C. The method of two-step approach is applied to add nanoparticles through the base fluid. Moreover, the feedforward multilayer perceptron of NN is examined to simulate the thermal conduction coefficient of Al2O3 – Cu nanofluid. So that, more than thirty six measured points are achieved through the experiments; while twenty five ones are chosen for ANN and eleven remained ones are applied to validate the network. It is seen that the ANN proposed approach can present the thermal conduction coefficient of hybrid nanofluids with suitable accuracy and good agreement with those of available empirical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.