Abstract

Piezoelectric polymer, polyvinylidene fluoride (PVDF) film, has been widely investigated as sensor and transducer material due to its high piezo-, pyro-, and ferroelectric properties. However, there are many limitations for PVDF film as human-related tactile sensor, such as non-breathability, stretching, requirement of additional process like poling, etc. In this paper, PVDF nano-fibrous membrane which is light, flexible, and wearable was prepared by electrospinning technique. The electrospinning parameters such as the voltage, feeding rate, tip-tocollector distance, etc, were well controlled. More than 4 hours electrospinning time was needed for a certain thickness of PVDF nano-fibrous membrane. The morphology of PVDF nanofiber was determined by scanning electron microscopy (SEM), the diameter distribution was calculated and crystal structure was evaluated by FTIR spectroscopy. We found the feasibility of developing piezoelectric PVDF fibrous membranes through electrospinning technology, which is a good candidate for flexible human-related tactile sensors to sense garment pressure, blood pressure, heartbeat rate, accidental external impact on human body, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call