Abstract

Magnetic drug carrier has been employed in drug delivery for over 30 years. Modern nanotechnology has improved its efficiency dramatically by decreasing its diameter into nano-scale. It may help chemotherapeutic agents penetrate BBB and raise local drug concentration in brain, which is the ideal model for glioma treatment. In our study, magnetic carrier was fabricated with octadecyl quaternized caroxymethyl chitosan (OQCMC), hydrophobic Fe3O4 ferrofluid and cholesterol, which showed a uniform diameter of 20 nm under transmission electronic microscopy and superparamagnetic character in vibration sample magnetical measurement system. To investigate the efficacy of drug delivery, paclitaxel was used as loaded drug and analyzed by the HPLC. Results showed that magnetic carrier released drugs for more than 20 d in vitro and maintain the drug concentration above 0.4 μg/g for 16 h in rat brain after magnetic targeting. Drug concentration increased by 1–3 folds when delivered by carrier without magnetic targeting, and by 3–15 folds after magnetic targeting. Cellular study revealed that the magnetic carrier was clearly localized in the targeted cortex neural cells and U251-MG cell lines. These results showed that this magnetic carrier is capable of maintaining high drug concentration in magnetically targeted area and carrying drugs or genes into cells, which is potentially promising for local chemotherapy to brain tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call