Abstract

Soy protein adhesives (SPI) exhibit broad prospects in substituting aldehyde-based resin due to the economic and environmental-friendly characteristics, but still face a challenge because of the dissatisfied bonding strength and terrible water resistance. Herein, prompted by organic-inorganic hierarchy, a multifunctional and novel soy protein adhesive (SPI-RAE-TiO2) consisting of rosin acid emulsion (RAE) and TiO2 nanoparticles (TiO2) were proposed. In comparison with original SPI, the dry and wet shear strengths of modified adhesive reached 2.01 and 1.21 MPa, respectively, which were increased by 130 % and 200 %. Furthermore, SPI-6RAE-0.5TiO2 was selected as the best proportion via the method of response surface methodology (RSM). What's more, SPI-6RAE-0.5TiO2 adhesive demonstrated prominent coating performance in both dry and wet surface conditions. Meanwhile, SPI-6RAE-0.5TiO2 adhesive possessed excellent mildew resistance and antibacterial ability with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), reflecting the antibacterial rates 97.71 % and 98.16 %, respectively. In addition, SPI-6RAE-0.5TiO2 adhesive also exhibited the outstanding green features such as the reduction of formaldehyde pollution and greenhouse effect through Life Cycle Assessment (LCA). Thus, this work provided a novel and functional approach to design multifunctional, superior-property and low-carbon footprint soy protein adhesive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.