Abstract

The goal of this research is to convey an outlook of heat transfer and friction factor in an exper-imental study with a double-pipe heat exchanger (DPHE). In process heat transformation (HT) and friction factor(f) in a DPHE counter-flow with a twisted tape (TT) arrangement by dimple inserts. The grooves were a kind of concavity that enhanced thermal transfer while only slightly degrading pressure. Heat transmission (HT) and friction factor(f) were investigated employing dimples with twisting tape of varying diameters along with uniform diameter (D) to the diameter-to-depth ratio (D/H). The impact of using twisted tape with various dimpled diameters D = 2, 4, and 6 mm at a uniform (D/H) = 1.5, 3 and 4.5 on heat transmission and friction factor properties were discussed. The dimple diameter (D) was directly connected to the friction coefficient (f), hence the highest value of friction factor was established at (D) = 6 mm. Furthermore, the best performance of Nusselt number (Nu) and performance evaluation criteria (PEC) was determined at a diameter of 4 mm. As a result, dimpled twisted tape additions are an excellent and cost-effective approach to improve heat transformation in heat exchangers. With fluid as a water, lower parameters, and higher Reynolds number (Re) resulted in better thermal conditions. Thermal performance and friction factor(f) correlations were developed with regard to the ge-ometry of the dimple diameter (D), its ratio (D/H), ‘Re’, and a good correspondence with the experimental data was achieved. The novel geometry caused a smaller pressure drop despite its higher convection heat transfer coefficient. The results also showed that raising the ‘Re’ and nanofluid concentration, the pressure drop increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call