Abstract

We study the notion of sensitivity on $G$-spaces and through examples observe that $G$-sensitivity neither implies nor is implied by sensitivity. Further, we obtain necessary and sufficient conditions for a map to be $G$-sensitive. Next, we define the notion of Devaney's chaos on $G$-space and show that $G$-sensitivity is a redundant condition in the definition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.