Abstract

The development of fusion materials for the safety of fusion power systems and understanding nuclear properties is important. The reaction cross-section data have a critical importance on fusion reactors and development for fusion reactor technology. In this study, the theoretical cross sections of some structural fusion materials such as Cr, V, Fe, Ni, Zr and Ta in deuteron-induced reactions have been investigated. The new calculations on the excitation functions of 50Cr(d, α)48V, 51V(d, 2n)51Cr, 51V(d, 4n)49Cr, 54Fe(d, α)52Mn, 54Fe(d, n)55Co, 58Ni(d, α)56Co, 96Zr(d, n)97Nb, 96Zr(d, 2n)96Nb and 181Ta(d, 2n)181W reactions have been carried out up to 90 MeV incident deuteron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the geometry dependent hybrid model and hybrid model. Equilibrium effects have been calculated according to the Weisskopf–Ewing model. The ALICE/ASH computer code has been used in all calculations. The calculated results have been compared with the experimental data existing in EXFOR database and found to be in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.