Abstract

We demonstrate the feasibility of deuterium solid-state NMR off-resonance rotating frame relaxation measurements for studies of slow motions in biomolecular solids. The pulse sequence, which includes adiabatic pulses for magnetization alignment, is illustrated for static and magic-angle spinning conditions away from rotary resonances. We apply the measurements for three systems with selective deuterium labels at methyl groups: a) a model compound, Fluorenylmethyloxycarbonyl methionine-D3 amino acid, for which the principles of the measurements and corresponding motional modeling based on rotameric interconversions are demonstrated; b) amyloid-β1-40 fibrils labeled at a single alanine methyl group located in the disordered N-terminal domain. This system has been extensively studied in prior work and here serves as a test of the method for complex biological systems. The essential features of the dynamics consist of large-scale rearrangements of the disordered N-terminal domain and the conformational exchange between the free and bound forms of the domain, the latter one due to transient interactions with the structured core of the fibrils. and c) a 15-residue helical peptide which belongs to the predicted α-helical domain near the N-terminus of apolipoprotein B. The peptide is solvated with triolein and incorporates a selectively labeled leucine methyl groups. The method permits model refinement, indicating rotameric interconversions with a distribution of rate constants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call