Abstract

Damage to pancreatic β-cells plays an important role in the development of type 2 diabetes, and oxidative stress is a likely contributor. In the present study, we investigated the effect of deuterohemin-AlaHisLys (DhHP-3), a microperoxidase-11 mimic, on rats with non-insulin dependent diabetes mellitus and examined the action mechanisms of DhHP-3. The induced hyperglycemia, glucose intolerance, and insulin resistance in diabetic rats were associated with increased oxidative stress and damage to pancreatic islets. DhHP-3 (3mg/kg) ameliorated hyperglycemia and insulin resistance, protected pancreas islet, decreased the content of malondialdehyde, and increased the activity of superoxide dismutase in plasma and pancreatic tissue by reducing ROS levels. Furthermore, DhHP-3 stimulated the proliferation of INS-1 cells and inhibited apoptosis by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3-K/AKT) signaling pathway. Our results demonstrated for the first time that DhHP-3 decreased blood glucose level in rats with non-insulin dependent diabetes mellitus, scavenged reactive oxygen species, activated the PI3-K/AKT signaling pathway, and protected pancreatic β-cells against apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call