Abstract

We describe a new method for measuring molecular dynamics based on the deuterium solid-state nuclear magnetic resonance (NMR) quadrupolar order rotating frame relaxation rateR1ρ,Q under static conditions. The observed quadrupolar order coherence is created using the broad-band Jeener-Broekaert excitation and is locked with a weak radio frequency (RF) field. We describe the experimental and theoretical approaches and show applications to a selectively deuterated valine side chain of the phosphorylated amyloid-β (1-40) fibrils phosphorylated at the serine-8 position. The R1ρ,Q rate is sensitive to the rotameric exchange mode. For biological samples, the low spin-lock field in the 5- to 10-kHz range has the advantage of avoiding sample heating and dehydration. Thus, it provides an alternative to approaches based on single-quantum coherence, which require larger spin-lock fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.