Abstract

Tungsten films deposited by magnetron sputtering on polycrystalline tungsten substrates were used as a model system to study the influence of the film microstructure on deuterium retention behavior. Different microstructures were produced by annealing the films up to recrystallization temperature and the corresponding structural changes were investigated by scanning electron microscopy combined with focused ion beam (FIB) cross sectioning. The influence of the induced structural changes on D retention was investigated by both nuclear reaction analysis and temperature-programmed desorption. D concentration in the investigated W films is higher than in polycrystalline bulk tungsten by a factor of 3. D retention in the films decreases as a function of annealing temperature. After annealing at 2000K, FIB cross-section images reveal that cavities appeared at the grain boundaries within the film and at the initial interface between the W film and W substrate. This new microstructure strongly affects the D depth profile and leads to the increase of D retention. Although a further increase of the holding time at 2000K or an increase of the annealing temperature to 2150K lead to the reduction of the retained D amount, the D concentration in the recrystallized W films cannot be reduced to a level as low as that of bulk W recrystallized at 2000K for 30min.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.