Abstract

Depth profiles of deuterium trapped in tungsten exposed to a low-energy (≈200 eV/D) and high deuterium ion flux (about 1 × 10 21 D/m 2 s) in clean (We use the term ‘clean’ in quotation marks having in mind the impossibility to obtain absolutely clean plasma. In our case the conception ‘clean’ D plasma means the plasma without intentionally introduced carbon impurities.) and carbon-seeded D plasmas at an ion fluence of about 2 × 10 24 D/m 2 and various temperatures have been measured up to a depth of 7 μm using the D( 3He, p) 4He nuclear reaction at a 3He energy varied from 0.69 to 4.0 MeV. The deuterium retention in single-crystalline and polycrystalline W increases with the exposure temperature, reaching its maximum value at about 500 K (for ‘clean’ plasma) or about 600 K (for carbon-seeded plasma), and then decreases as the temperature grows further. It is assumed that tungsten carbide formed on the W surface under exposure to the carbon-seeded D plasmas serves as a barrier layer for diffusion and prevents the outward transport of deuterium, thus increasing the D retention in the bulk of tungsten.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.