Abstract

A systematic study of the influence of the deposition conditions on the deuterium retention in co-deposited tungsten layers formed both by magnetron sputtering and in the PISCES-B linear device has been carried out. Experimental parameters such as the tungsten deposition rate, the incident particle energy and the substrate temperature are shown to affect the level of deuterium retention in the layers. A decreased retention for increased substrate temperature and deposition rates, and an increased retention for increasing incident deuterium particle energy are observed. A scaling equation is proposed to describe the influence of the conditions during the co-deposition process (surface temperature, incident particle energy and deposition flux) on the deuterium retention. In addition, the desorption kinetics of deuterium has been studied by TDS. Two desorption stages at 473–573 K and at 1073 K have been observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.