Abstract

The gel-fluid phase equilibrium in a two-component system formed from dimyristoylphosphatidylcholine (DMPC) and distearoylphosphatidylcholine (DSPC) was investigated using solid-state wide-line 2H NMR spectroscopy. Analysis of the spectral first moments and the quantitation of gel and fluid phases by means of difference spectroscopy provided the temperature-composition phase diagrams. Phase diagrams were constructed for mixtures of perdeuterated DMPC, DMPC-d54, with DSPC and for the complementary system comprised of DMPC and perdeuterated DSPC, DSPC-d70. The gel-fluid coexistence region was found to extend over a wider range of temperature and composition for the DMPC-d54-DSPC system than for the DMPC-DSPC-d70 system. Comparison of these data with the phase diagram for the DMPC-DSPC system showed that in the gel-fluid region the fraction of lipids in the fluid phase at a given temperature and system composition decreases for the three systems in the order DMPC-d54-DSPC greater than DMPC-DSPC greater than DMPC-DSPC-d70. While the fluid fraction varies by as much as 90% among the three systems, the composition of the fluid phase, i.e., the ratio of the concentrations of the two molecules in the fluid phase, varies by about 20% over the whole temperature and system composition range. The effective acyl chain lengths of the DMPC-d54 and DSPC-d70 molecules as a function of temperature and composition in the fluid phase, when the system is all fluid or is in the gel-fluid coexistence region, were calculated from the quadrupole splittings in the axially symmetric powder patterns obtained for the all-fluid phase. The magnitudes of the coefficient of thermal expansion for both the DMPC-d54 and the DSPC-d70 molecules were smaller in the fluid phase of binary mixtures than in one-component bilayers containing either DSPC-d70 or DMPC-d54 alone. In addition, at any given temperature in the fluid phase, the increase in the acyl chain length of DMPC-d54 with increasing DSPC content of the system was smaller than the concomitant increase in the length of DSPC-d70 in mixtures with DMPC. In the entire temperature and composition range when the binary mixtures are in the all-fluid or in the gel-fluid coexistence region, the largest value obtained for the DMPC-d54 molecule in the fluid phase was smaller than the smallest value obtained for the DSPC-d70 molecule in the fluid phase. The acyl chain lengths were used to calculate the effective weighted-average thickness, d, of the fluid phase bilayer.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call