Abstract

The molar heat capacities of chloroform, dichloromethane, methanol, acetonitrile, acetone, dimethyl sulfoxide, benzene, dimethylformamide, toluene, and cyclohexane, as well as their deuterated isotopologues, were measured using a multi-channel heat conduction TAM (Thermal Activity Monitor) III microcalorimeter. In addition, the apparent molar heat capacities of some of the associated dilute aqueous solutions (0.0039 < solute mole fraction, x i < 0.0210) were also measured. A temperature drop method from (298.15 to 297.15) K at 0.1 MPa was employed. The corresponding heat capacities were determined from the integration of the measured heat flow. The heat capacity results are shown to be in good to very good agreement with the available literature values. In addition, good correlations were obtained for the effect of isotopic substitution on both molar heat capacity and apparent molar heat capacity in aqueous solutions. These correlations should be useful in the prediction of the molar heat capacities or the apparent molar heat capacities of other deuterated compounds. Since these measurements were conducted with ampoules, the effects of heat of condensation and/or vapor space on the accuracy of the heat capacity determinations are discussed. The overall results from this study demonstrate the utility of a multi-channel heat conduction microcalorimeter in obtaining good reproducibility and good accuracy for molar heat capacities as well as apparent molar heat capacities from simultaneous samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.