Abstract

Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.