Abstract

To characterize the (2 H) deuterium MR signal measured from human brain at 7T in participants loading with D2 O to ˜1.5% enrichment over a six-week period. 2 H spectroscopy and imaging measurements were used to track the time-course of 2 H enrichment within the brain during the initial eight-hour loading period in two participants. Multi-echo gradient echo (MEGE) images were acquired at a range of TR values from four participants during the steady-state loading period and used for mapping 2 H T1 and T2 * relaxation times. Co-registration to higher resolution 1 H images allowed T1 and T2 * relaxation times of deuterium in HDO in cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) to be estimated. 2 H concentrations measured during the eight-hour loading were consistent with values estimated from cumulative D2 O dose and body mass. Signal changes measured from three different regions of the brain during loading showed similar time-courses. After summing over echoes, gradient echo brain images acquired in 7.5 minutes with a voxel volume of 0.36 ml showed an SNR of ˜16 in subjects loaded to 1.5%. T1 -values for deuterium in HDO were significantly shorter than corresponding values for 1 H in H2 O, while T2 * values were similar. 2 H relaxation times in CSF were significantly longer than in GM or WM. Deuterium MR Measurements at 7T were used to track the increase in concentration of 2 H in brain during heavy water loading. 2 H T1 and T2 * relaxation times from water in GM, WM, and CSF are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call