Abstract

The stable isotopes of oxygen and hydrogen incorporated in the water molecule (18O and 2H) have become an important tool not only in Isotope Hydrology, routinely applied to study the origin and dynamics of surface and groundwaters, but also in studies related to atmospheric circulation and palaeoclimatic investigations. A proper understanding of the behaviour of these tracers in the water cycle is required for a meaningful use of these tools in any of these disciplines. Our knowledge of the vertical distribution and the factors controlling the stable isotope ratios of oxygen and hydrogen in atmospheric moisture derives from a limited number of observations and vertical profiles in the atmosphere. An international programme jointly operated by the International Atomic Energy Agency (IAEA) and the World Meteorological Organization (WMO), and operational since 1961, has resulted in the development of a dedicated database to monitor isotope ratios in precipitation in more than 500 meteorological stations world-wide. The main features of the spatial and temporal variations of stable isotope ratios of oxygen and hydrogen in precipitation and atmospheric moisture at the global scale are presented based on the analysis of limited data on water vapour, data obtained by the Global Network for Isotopes in Precipitation (GNIP) and the few observations at high latitudes. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call