Abstract

First wall and blanket materials in Tokamak machines must accommodate increasing concentrations of helium and hydrogen isotopes. Alloy design principles point to the efficacy of trapping He and hydrogen at finely dispersed precipitates to minimize their impact on mechanical properties. Titanium carbide particles are known to trap He effectively in austenitic stainless steel. Less is known about TiC as a trap for helium and hydrogen isotopes in ferritic steels. This paper demonstrates the feasibility of directly measuring the trapping of helium and deuterium at TiC-ferrite interfaces using atom probe field ion microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call