Abstract

Using the IRAM 30m telescope, we mapped the methanol emission in the pre-stellar core L1544 and observed singly deuterated methanol (CH$_2$DOH and CH$_3$OD) towards the dust peak of L1544. Non-LTE radiative transfer modelling was performed on three CH$_3$OH emissions lines at 96.7 GHz, using a Bonnor-Ebert sphere as a model for the source. We have also assumed a centrally decreasing abundance profile to take the molecule freeze-out in the inner core into account. The column density of CH$_2$DOH was derived assuming LTE excitation and optically thin emission. The CH$_3$OH emission has a highly asymmetric morphology, resembling a non-uniform ring surrounding the dust peak, where CO is mainly frozen onto dust grains. The observations provide an accurate measure of methanol deuteration in the cold pre-stellar gas. The derived abundance ratio is [CH$_2$DOH]/[CH$_3$OH] $= 0.10\pm 0.03$, which is significantly smaller than the ones found in low-mass Class 0 protostars and smaller than the deuterium Fraction measured in other molecules towards L1544. The low deuterium fractionation observed in L1544 and the morphology of the CH$_3$OH emission suggest that we are mainly tracing the outer parts of the core, where CO just started to freeze-out onto dust grains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.