Abstract

Truncating mutations in USP9X have been identified in oral squamous cell carcinoma patients. The aim of this study was to determine USP9X's functional role, if any, in head and neck cancer cells. USP9X was depleted/overexpressed in head and neck cancer cell line: SCC15 (tongue), CAL27 (tongue), FaDu (pharynx) and Detroit 562 (pharynx). Cell proliferation was monitored using the CyQUANT assay, and cell cycle distribution was determined by flow cytometry. Immunoblot assays were conducted to assess protein levels. RT-qPCR was performed to determine Notch and Wnt pathway target gene expression. Our data showed a direct correlation between USP9X protein levels and proliferation, as well as Notch pathway activity in head and neck cancer cells. However, at least in FaDu, USP9X did not appear to regulate proliferation through the Notch pathway. Immunoblotting revealed a dramatic reduction in downstream targets of mTOR complex 1, namely total ribosomal protein (S6) and its phosphorylated form (pS6), when USP9X was depleted in FaDu cells. In contrast, in immortalized but non-tumorigenic HaCaT keratinocytes, USP9X depletion led to increase in cell proliferation, maintaining direct regulation of Notch activity. The functional role of USP9X was found to be context dependent. USP9X possibly promotes head and neck cancer cell proliferation through the mTOR pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.