Abstract

Loss of insulin-secreting β-cells in diabetes may be either due to apoptosis or dedifferentiation of β-cell mass. The ubiquitin-proteasome system comprising E3 ligase and deubiquitinases (DUBs) controls several aspects of β-cell functions. In this study, screening for key DUBs identified USP1 to be specifically involved in dedifferentiation process. Inhibition of USP1 either by genetic intervention or small-molecule inhibitor ML323 restored epithelial phenotype of β-cells, but not with inhibition of other DUBs. In absence of dedifferentiation cues, overexpression of USP1 was sufficient to induce dedifferentiation in β-cells; mechanistic insight showed USP1 to mediate its effect via modulating the expression of inhibitor of differentiation (ID) 2. In an invivo streptozotocin (STZ)-induced dedifferentiation mouse model system, administering ML323 alleviated hyperglycemic state. Overall, this study identifies USP1 to be involved in dedifferentiation of β-cells and its inhibition may have a therapeutic application of reducing β-cell loss during diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.