Abstract

The fate of proteins is determined by the addition of various forms of polyubiquitin during ubiquitin-mediated proteasomal degradation. Cylindromatosis (CYLD), a K63-specific deubiquitinase, is enriched in postsynaptic density fractions of the rodent central nervous system (CNS), but the synaptic role of CYLD in the CNS is poorly understand. Here we show that CYLD deficiency (Cyld−/−) results in reduced intrinsic hippocampal neuronal firing, a decrease in the frequency of spontaneous excitatory postsynaptic currents and a decrease in the amplitude of field excitatory postsynaptic potentials. Moreover, Cyld−/− hippocampus shows downregulated levels of presynaptic vesicular glutamate transporter 1 (vGlut1) and upregulated levels of postsynaptic GluA1, a subunit of the AMPA receptor, together with an altered paired-pulse ratio (PPR). We also found increased activation of astrocytes and microglia in the hippocampus of Cyld−/− mice. The present study suggests a critical role for CYLD in mediating hippocampal neuronal and synaptic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call