Abstract

<p>Coupled climate-ice sheet models are crucial to evaluating climate-ice feedbacks' role in future ice sheet evolution. Such models are calibrated to reproduce modern-day ice sheets, but current observations alone are insufficient to constrain the strength of climate-ice feedbacks. The extent of the Northern Hemisphere ice sheets during the last glacial maximum, ~20,000 years ago, is well known and could provide a benchmark for calibrating coupled climate-ice sheet models. We test this with the FAMOUS-ice coupled Climate-Ice Sheet model (Smith et al., 2020), a fast GCM coupled to the Glimmer ice sheet model. We ran Last Glacial Maximum simulations using FAMOUS-ice with interactive North American Ice Sheet, following the PMIP4 protocol (Kageyama et al., 2018). We find that the standard model setup, calibrated to produce a good present-day Greenland (Smith et al., 2020), produced a collapsed North American ice sheet at the Last Glacial Maximum. We ran ensembles of hundreds of simulations to explore the influence of uncertain ice sheet, albedo, atmospheric, and oceanic parameters on the ice sheet extent. The North American continent deglaciated rapidly in most of our simulations, leaving only a handful of useful simulations out of 280. We thus developed a method to efficiently identify regions of the parameter space that can produce a reasonable ice-sheet extent. This involved emulating the equilibrium ice volume and area as a function of the surface mass balance at the start of our simulations. We then ran three waves of short simulations for 20-50 years to identify parameter values and surface mass balance conditions potentially suitable to grow a realistic ice sheet. This enabled us to find ~160 simulations with good ice extent.</p><p>Through analysis of these simulations, we find that albedo parameters determine the majority of uncertainty when simulating the Last Glacial Maximum North American Ice Sheets. The differences in cloud cover over the ablation zones of the North American and Greenland ice sheet explains why the ice sheets have different sensitivities to surface mass balance parameters. Based on our work, we propose that the Last Glacial Maximum can provide an “out-of-sample” target to avoid over calibrating coupled climate-ice sheet models to the present day.</p><p><strong>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.