Abstract
Continuing high rates of acidic deposition in the eastern United States may lead to long-term effects on stream communities, because sensitive catchments are continuing to lose anions and cations. We conducted a two-year study of the effects of pH and associated water chemistry variables on detrital processing in three streams with different bedrock geology in the Monongahela National Forest, West Virginia. We compared leaf pack processing rates and macroinvertebrate colonization and microbial biomass (ATP concentration) on the packs in the three streams. Breakdown rates of red maple and white oak leaf packs were significantly lower in the most acidic stream. The acidic stream also had significantly lower microbial and shredder biomass than two more circumneutral streams. Shredder composition differed among streams; large-particle detritivores dominated the shredder assemblages of the two circumneutral streams, and smaller shredders dominated in the acidic stream. Within streams, processing rates for three leaf species were not significantly different between the two years of the study even though invertebrate and microbial communities were different in the two years. Thus, macroinvertebrate and microbial communities differed both among streams that differed in their capacity to buffer the effects of acidic precipitation and among years in the same stream; these differences in biotic communities were not large enough to affect rates of leaf processing between the two years of the study, but they did significantly affect processing rates between acidic and circumneutral streams.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.