Abstract

Research Article| July 01, 1986 Detrital high-pressure/low-temperature minerals in a late Turonian flysch sequence of the eastern Alps (western Austria): Implications for early Alpine tectonics Wilfried Winkler; Wilfried Winkler 1Institute of Geology, University of Basel, Basel, Switzerland Search for other works by this author on: GSW Google Scholar Daniel Bernoulli Daniel Bernoulli 1Institute of Geology, University of Basel, Basel, Switzerland Search for other works by this author on: GSW Google Scholar Author and Article Information Wilfried Winkler 1Institute of Geology, University of Basel, Basel, Switzerland Daniel Bernoulli 1Institute of Geology, University of Basel, Basel, Switzerland Publisher: Geological Society of America First Online: 01 Jun 2017 Online ISSN: 1943-2682 Print ISSN: 0091-7613 Geological Society of America Geology (1986) 14 (7): 598–601. https://doi.org/10.1130/0091-7613(1986)14<598:DHMIAL>2.0.CO;2 Article history First Online: 01 Jun 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Wilfried Winkler, Daniel Bernoulli; Detrital high-pressure/low-temperature minerals in a late Turonian flysch sequence of the eastern Alps (western Austria): Implications for early Alpine tectonics. Geology 1986;; 14 (7): 598–601. doi: https://doi.org/10.1130/0091-7613(1986)14<598:DHMIAL>2.0.CO;2 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyGeology Search Advanced Search Abstract Along the northern margin of the eastern Alps, structurally intercalated between the main Austroalpine thrust and the Pennine Rhenodanubic flysch nappe, a thin, tectonically complex zone occurs that comprises a series of tectonic melanges and imbricates of oceanic (South Pennine) and distal continental margin (Austroalpine) origin. This zone is the lateral continuation of the ophiolite-bearing Arosa Zone of the Swiss Alps; we refer to it as the Walsertal Zone.In a broken flysch formation of the Walsertal Zone, turbiditic sandstones yield detrital grains of the high-P/low-T metamorphic minerals lawsonite and glaucophane (crossite, ferroglaucophane). The sandstones are dated as late Turonian to earliest Coniacian, about 87 to 89 Ma. This age falls into the time span of radiometric ages of subduction-related high-P/low-T metamorphism along the South Pennine/Austroalpine convergent margin, and of coeval cooling ages of medium-P/medium-T metamorphism in the middle Austroalpine nappes. If the high-P/low-T minerals are related to mid-Cretaceous high-P/low-T metamorphism as we think, the high-P metamorphic rocks must have been brought up from about 20-km depth within about 10 m.y. or even less. As isostatic uplift alone would have been too slow, alternative tectonic mechanisms such as “corner flow” must be responsible for rapid uplift and erosion in a fore-arc environment. This content is PDF only. Please click on the PDF icon to access. First Page Preview Close Modal You do not have access to this content, please speak to your institutional administrator if you feel you should have access.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.