Abstract
AbstractApatite is increasingly used in sedimentary provenance studies. However, detrital apatite U–Pb geochronology can be challenging due to the presence of non‐radiogenic Pb, its intermediate closure temperature (~350–550°C) and/or age‐resetting by metamorphic/metasomatic processes. The Lu–Hf system in apatite has a higher closure temperature (~675–750°C) and is, therefore, more robust to thermal resetting. Here we present the first detrital apatite Lu–Hf age spectra. We have developed a laser‐ablation Lu–Hf dating technique, using reaction‐cell mass spectrometry, that allows rapid cost‐effective analysis, required for detrital apatite studies. The method is best suited to Precambrian detritus, permitting greater radiogenic Hf ingrowth. Using samples from Siberia, we demonstrate: (1) excellent correlations between U–Pb and Lu–Hf dates for apatites from igneous protoliths; and (2) that Lu–Hf dating can detect primary age information in metamorphic grains. Hence, when used in tandem with U–Pb zircon and apatite geochronology, Lu–Hf apatite dating provides a powerful new tool for provenance studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.