Abstract

In 1973, the Velsicol Chemical Company, which manufactured FireMaster, a brominated flame retardant, and NutriMaster, a nutritional supplement, mistakenly shipped hundreds of pounds of FireMaster to grain mills around Michigan where it was incorporated into animal feed and then into the food chain across the state. An estimated 6.5 million Michigan residents consumed polybrominated biphenyl (PBB)-laced animal products leading to one of the largest agricultural accidents in U.S. history. To date, there have been no studies investigating the effects of PBB on epigenetic regulation in sperm, which could explain some of the endocrine-related health effects observed among children of PBB-exposed parents. Fusing epidemiological approaches with a novel in vitro model of human spermatogenesis, we demonstrate that exposure to PBB153, the primary component of FireMaster, alters the epigenome in human spermatogenic cells. Using our novel stem cell-based spermatogenesis model, we show that PBB153 exposure decreases DNA methylation at regulatory elements controlling imprinted genes. Furthermore, PBB153 affects DNA methylation by reducing de novo DNA methyltransferase activity at increasing PBB153 concentrations as well as reducing maintenance DNA methyltransferase activity at the lowest tested PBB153 concentration. Additionally, PBB153 exposure alters the expression of genes critical to proper human development. Taken together, these results suggest that PBB153 exposure alters the epigenome by disrupting methyltransferase activity leading to defects in imprint establishment causing altered gene expression, which could contribute to health concerns in the children of men exposed to PBB153. While this chemical is toxic to those directly exposed, the results from this study indicate that the epigenetic repercussions may be detrimental to future generations. Above all, this model may be expanded to model a multitude of environmental exposures to elucidate the effect of various chemicals on germline epigenetics and how paternal exposure may impact the health of future generations.

Highlights

  • In 1973, the Velsicol Chemical Company, which manufactured FireMaster, a brominated flame retardant, and NutriMaster, a nutritional supplement, mistakenly shipped hundreds of pounds of FireMaster to grain mills around Michigan where it was incorporated into animal feed and into the food chain across the state

  • In 1973, farms across Michigan mistakenly received cattle feed mixed with FireMaster BP-6, a chemical flame retardant composed of a mixture of polybrominated biphenyl compounds (PBBs), rather than NutriMaster, a food additive that increased milk production in farm animals[6,7,8,9]

  • Though it has been nearly 45 years since the accident, people who were exposed through the consumption of contaminated animal products and those exposed in utero and through breastmilk still have circulating levels of PBBs

Read more

Summary

Introduction

In 1973, the Velsicol Chemical Company, which manufactured FireMaster, a brominated flame retardant, and NutriMaster, a nutritional supplement, mistakenly shipped hundreds of pounds of FireMaster to grain mills around Michigan where it was incorporated into animal feed and into the food chain across the state. These results suggest that PBB153 exposure alters the epigenome by disrupting methyltransferase activity leading to defects in imprint establishment causing altered gene expression, which could contribute to health concerns in the children of men exposed to PBB153 While this chemical is toxic to those directly exposed, the results from this study indicate that the epigenetic repercussions may be detrimental to future generations. Given the observation of different health effects observed in the children of the PBB Registry compared to their parents, we hypothesize that beyond impacting the epigenome of somatic cells, exposure to PBBs may alter the heritable epigenome to cause intergenerational health effects not seen in generations directly exposed To study this effect, we focused on the men of this cohort whose exposure would not lead to in utero or breastfeeding exposure. Since these reproductive defects could not be attributed to abnormal sperm counts or sperm morphology, as PBB-exposed men do not show declines in semen parameters[29], we hypothesize that PBB153, the primary component of FireMaster BP-67,9, disrupts the epigenetic regulation during spermatogenesis, the establishment of parent-of-origin imprints

Objectives
Methods
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.