Abstract

Human brucellosis (HB) is a seasonal and climate-affected infectious disease that is posing an increasing threat to public health and economy. However, most of the research on the seasonal relationships and impact of climatic factors on HB did not consider the secular trend and spatiotemporal effect related to the disease. We herein utilized long-term surveillance data on HB from 2008 to 2020 using sinusoidal models to explore detrended relationships between climatic factors and HB. In addition, we assessed the impact of such climatic factors on HB using a spatial panel data model combined with the spatiotemporal effect. HB peaked around mid-May. HB was significantly correlated with climatic factors with 1-5-month lag when the respective correlations reached the maximum across the different lag periods. Each 0.1 °C increase in temperature led to 0.5% decrease in the 5-month lag incidence of HB. We also observed a positive spatiotemporal effect on the disease. Our study provides a detailed and in-depth overview of seasonal relationships and impact of climatic factors on HB. In addition, it proposes a novel approach for exploring the seasonal relationships and quantifying the impacts of climatic factors on various infectious diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.