Abstract

Signal decompositions such as wavelet and Gabor transforms have successfully been applied in denoising problems. Empirical mode decomposition (EMD) is a recently proposed method to analyze non-linear and non-stationary time series and may be used for noise elimination. Similar to other decomposition based denoising approaches, EMD based denoising requires a reliable threshold to determine which oscillations called intrinsic mode functions (IMFs) are noise components or noise free signal components. Here, we propose a metric based on detrended fluctuation analysis (DFA) to define a robust threshold. The scaling exponent of DFA is an indicator of statistical self-affinity. In our study, it is used to determine a threshold region to eliminate the noisy IMFs. The proposed DFA threshold and denoising by DFA–EMD are tested on different synthetic and real signals at various signal to noise ratios (SNR). The results are promising especially at 0 dB when signal is corrupted by white Gaussian noise (WGN). The proposed method outperforms soft and hard wavelet threshold method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.