Abstract

Mycotoxins contamination in food and feed has emerged as an issue of serious concern because they pose serious health risks to both humans and livestock. The study aimed to evaluate the effects of two rumen-derived Enterococcus spp. on fermentation and hygienic quality of artificially contaminated corn silages. The toxigenic fungal-infested (FI) and non-fungal infested (NFI) corn was harvested at 1/2 milk line stage and ensiled without additives (CON) or with Enterococcus faecalis (E) or Enterococcus faecium (M). The pH of FI silages was higher than that of NFI silages, the pH in NFI-M was lower than in NFI-CON. Inoculating E. faecium markedly increased lactic acid concentration compared to CON and E silages. Both E. faecium and E. faecalis decreased the deoxynivalenol (DON) and zearalenone (ZEN) concentrations compared with the CON for FI silages, while E. faecium was more effective in eliminating aflatoxin B1 (AFB1 ). The FI silage had higher bacterial and fungal Shannon indexes than NFI silages. The relative abundance (RA) of Aspergillus and Fusarium marked a decline from day 5 to day 90. Inoculating E. faecium and E. faecalis reduced the RA of Penicillium compared to CON. In vitro mycotoxins removal assay indicated that E. faecium was more effective in AFB1 detoxification while having lower detoxifying ZEN capacity than E. faecalis. Inoculating rumen-derived Enterococcus spp. isolates alleviated the negative effects of fungal infestation on the fermentation and hygienic quality of corn silages by changing the microbial communities and detoxifying mycotoxins. © 2023 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call