Abstract

Aflatoxins, which was produced by Aspergillus flavus or Aspergillus parasiticus fungi during grain and feed processing or storage, could cause severe health problems and reduction of yield during shrimp cultures. To evaluate toxic effects of aflatoxin B1 (AFB1) in juvenile Pacific white shrimp (Litopenaeus vannamei) and potential protective effect of Zn(II)–curcumin (Zn-CM), four experimental diets (control, 500 μg/kg AFB1, 500 μg/kg AFB1+100 mg/kg Zn-CM, 500 μg/kg AFB1+200 mg/kg Zn-CM) were formulated in quadruplicate to feed the shrimp for 8 weeks. The results revealed that AFB1 could induce significant decrease in final body weight (FBW), weight gain (WG, %) and visible variations of the hepatopancreas structures in L.vannamei. Compared with AFB1 group, AFB1+100 mg/kg Zn-CM group significantly ameliorated the toxic effects of AFB1 on growth performance, while AFB1+100 mg/kg Zn-CM group had no effect on growth performance. Dietary AFB1+100 mg/kg Zn-CM enhanced phenoloxidase (PO) (P < 0.05) activity. Both dietary AFB1+100 mg/kg Zn-CM and AFB1+200 mg/kg Zn-CM reduced inducible nitric oxide synthase (iNOS) activity and glutathione (GSH) level, decreased the content of malondialdehyde (MDA) (P < 0.05) in hepatopancreas compared with AFB1 group. Transmission electron microscopy (TEM) analysis demonstrated that Zn-CM could relieve the microvilli transformation and mitochondria accumulation reduction caused by AFB1. Consequently, the results demonstrated that suitable Zn-CM could mitigate the AFB1-induced hepatotoxicity and immunotoxicity effects on L.vannamei.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call