Abstract

Acetaminophen (APAP), a widely used analgesic–antipyretic drug, is frequently detected in the environment and may pose ecological risks to aquatic communities. In this work, an APAP-degrading organism, designated as Ensifer sp. POKHU, was isolated from activated sludge (AS) enriched with APAP. POKHU degraded up to 630 mg/L of APAP without substrate inhibition. The bacterium metabolized APAP to hydroquinone (HQ) via 4-aminophenol (4-AP). APAP derivatives, 4AP, HQ, and 1,4-benzoquinone (BQ), frequently detected in the environment, were found to inhibit nitrogen metabolism (ammonium oxidation) to a greater extent than APAP. POKHU had the ability to degrade varying levels (0.4–40 mg/L) of 4-AP, HQ, and BQ, which indicated a great potential for detoxification in environments contaminated with both APAP and its derivatives. The addition of POKHU to fresh AS samples taken from a wastewater treatment plant greatly increased the biotransformation rates of APAP from 5.6 d−1 (no POKHU augmentation) to >20.0 d−1 (5% POKHU). Bioaugmentation with POKHU reduced 400 μg/L of APAP to levels below its ecotoxicity threshold within 4 h, which is shorter than the typical hydraulic retention times for full-scale AS processing. Overall, this study identified a new auxiliary biological agent for APAP detoxification, which could degrade both APAP and its metabolic derivatives (those that can be more toxic than the parent contaminant, APAP). The results have practical implications for developing a biological means (detoxification and bioaugmentation) of treating high-strength pharmaceutical waste streams, such as wastewater from hospitals and drug manufactures, and of landfill leachates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.