Abstract

CHEMISTRY Catalytic olefin and alkyne hydrogenations often proceed through potentially nucleophilic organometallic intermediates, and chemists have recently taken to intercepting such intermediates with a variety of electrophiles. This strategy of carbon-carbon bond formation is appealing from an efficiency standpoint because it eliminates the need to prepare the (often air- and water-sensitive) organometallic nucleophiles stoichiometrically. Barchuk et al. show that an iridium (I) catalyst effectively couples alkyl-substituted alkynes to imine electrophiles during hydrogenation to yield allylic amine products. The reaction proceeds with high selectivity for the E olefin isomer, and also regioselectively places larger alkyl groups closer to nitrogen. This catalyst complements a rhodium analog that proved effective in a range of similar couplings (as summarized recently by Ngai et al. ) but led to exclusive hydrogenation of the alkyne in the present system. — JSY J. Am. Chem. Soc. 129 , 10.1021/ja073018j; J. Org. Chem. 72 , 1063 (2007).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.