Abstract

An experimental study of the influence of condensation of supersaturated carbon vapor formed behind reflected shock waves on the process of propagation of a shock wave and formation of a detonation wave of condensation is carried out. Highly supersaturated carbon vapor was formed from thermal decay of unstable carbon suboxide C3O2 → C + 2CO behind a shock wave in mixtures containing 10–30% C3O2 in Ar. This reaction was followed by fast growth of condensed carbon particles, accompanied by heat release. Experiments have shown a considerable temperature and pressure increase in the narrow zone behind the wave front, resulting in shock wave amplification and transition to a detonation-like regime. An analysis of the kinetics and heat release in the given conditions and calculations based upon one-dimensional detonation theory have shown that in a mixture of 10% C3O2 + Ar, insufficient heat release resulted in a regime of “overdriven detonation”. In a mixture of 20% C3O2 + Ar a very good coincidence of measured values of pressure and wave velocity with calculated Chapman–Jouguet parameters is observed. In a 30% C3O2 + Ar mixture, an excess heat release caused a slow down of the effective condensation rate and a regime of “underdriven detonation” is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.