Abstract
AbstractThe way of initiating an insensitive high explosive can influence the start of a detonation reaction remarkably. In order to study the extent of this influence, different boosters and different booster structures for the initiation of explosive mixtures containing TNT and nitroguanidine (NQ) have been used. The experiments have been conducted in a 1.5 m3 containment from which the detonation products could be taken and analyzed. In those cases where we only used a 10 g RDX booster together with a detonation cap no. 8, we had not a complete detonation reaction by initiating cylindrical charges of TNT/NQ and TNT/AN. This means that unreacted TNT was analyzed in the solid residue, mainly consisting of carbon soot. On the other hand, we had a complete detonation using an additional booster of about 18 g detonation sheet, placed on the front side of the cylindrical explosive, having the same diameter as the explosive charge.Another part of the investigations deals with the determination of the influence of different argon pressures on the composition of the detonation gas and the solid residue. Between vacuum and one bar argon a strong change not only of the gas but also of the soot residue was measured. A stronger influence on the products was found using a confinement with glass tubes.The investigation of Al‐containing charges exhibited a very different behavior compared with charges without Al. No more influence of vaccum or of different ambient gas pressure could be observed. By investigation of two composite explosive charges (PBX) containing binder systems of different energies and different oxygen balances, a great influence on the reaction of Al was found. The PBX charges with the better O2‐balance containing the energetic GAP‐binder reacted nearly completely with the Al, opposite to the charge containing the polyisobutylene (PIB) binder system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.