Abstract

We describe the details of an unconfined insensitive high explosive (PBX 9502) circular arc section experiment, in which, after a transient period, a detonation sweeps around the arc with constant angular speed. The arc section is sufficiently wide that the flow along the centerline of the arc section remains two-dimensional. Data includes time-of-arrival diagnostics of the detonation along the centerline inner and outer arc surfaces, which is used to obtain the angular speed of the steadily rotating detonation. We also obtain the lead shock shape of the detonation as it sweeps around the arc. Reactive burn model simulations of the PBX 9502 arc experiment are then conducted to establish the structure of the detonation driving zone, i.e. the region enclosed between the detonation shock and flow sonic locus (in the frame of the steady rotating detonation). It is only the energy released in this zone which determines the speed at which the steady detonation sweeps around the arc. We show that the sonic flow locus of the detonation driving zone largely lies at the end of, or within, the fast reaction stage of the PBX 9502 detonation, with the largest section of the detonation driving zone lying close to the inner arc surface. We also demonstrate that the reactive burn model provides a good prediction of both the angular speed of the detonation wave and the curved detonation front shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call