Abstract
A new experimental method for evaluating the detonability of fuel–air mixtures (FAMs) based on measuring the deflagration-to-detonation (DDT) run-up distance and/or time in a standard pulse detonation tube (SDT) is used to rank gaseous premixed and non-premixed FAMs by their detonability under substantially identical thermodynamic and gasdynamic conditions. In the experiments, FAMs based on hydrogen, acetylene, ethylene, propylene, propane–butane, n-pentane, and natural gas of various compositions, as well as FAMs based on the gaseous pyrolysis products of polypropylene (PP), are used: from extremely fuel-lean to extremely fuel-rich at normal temperatures and pressures. The concept of equivalent FAMs exhibiting the same or similar detonability under the same conditions is proposed. Equivalent FAMs can be used for predictive physical modeling of detonation processes involving FAMs of other fuels. The ranking of FAMs in terms of their relative detonability allows choosing a propylene FAM for physical modeling of the operation process in the PP-fueled solid-fuel ramjets operating on detonative combustion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.