Abstract

Abstract Rock mass fractures adversely affect the production of ornamental stone quarries. Fractures cause natural rock blocks, which threaten extraction of the required commercial block size of ornamental stones. Accurate subsurface detection and modeling of fractures are required for pre-exploitation evaluation and planning. This paper introduces a new three-dimensional deterministic fracture modeling approach using ground penetrating radar (GPR) as a data acquisition tool. A case study was performed in a fractured bench of a sandstone quarry in Firenzuola, Italy, using a 400 MHz GPR antenna. To accurately detect fractures at true depth, an in situ calibration based on previous knowledge of the depth of a subsurface reference reflector allowed us to estimate a bulk dielectric constant of the rock mass during the time of data acquisition. A data interpretation tracing technique was developed to model fractures as 3-D surfaces in two forms, either irregular or planes. The modeled fractures were visualized through a multi-platform visualization software package (ParaView). A comparison between the orientations of the fractures measured by the traditional manual method and the orientations of the modeled fractures is presented as a possible geologic validation for the detection and interpretation of fractures. For the objective of pre-exploitation evaluation, a distribution analysis provided an evaluation-based fracture index for the bench in the case study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.