Abstract

Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migretion effects on the turbine blade tip and outer air seal heat loads. The LDS model is obtained from an unsteady inviscid calculation. The inviscid LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. The feasibility of the inviscid LDS model is demonstrated on a single stage, three-dimensional, vane-blade turbine with a hot streak entering the vane passage at mid-pitch and mid-span. The steady viscous solution with the LDS model is compared to the time-averaged viscous, steady viscous and time-averaged inviscid computations. The LDS model reproduces the time-averaged viscous temperature distribution on the outer air seal to within 2.3%, while the steady viscous has an error of 8.4%, and the time-averaged inviscid calculation has an error of 17.2%. The solution using the LDS model is obtained at a cost in CPU time that is 26% of that required for a time-averaged viscous computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.