Abstract

Quantum teleportation is a key ingredient in quantum networks1,2 and one of the building blocks for quantum computation3,4. Teleportation between distant material objects using light as the quantum-information carrier has been a particularly exciting goal. Here we propose and demonstrate the deterministic continuous-variable teleportation between distant material objects. The objects are macroscopic atomic ensembles at room temperature. Entanglement required for teleportation is distributed by light propagating from one ensemble to the other. We demonstrate that the experimental fidelity of the quantum teleportation is higher than that achievable by any classical process. Furthermore, we demonstrate the benefits of deterministic teleportation by teleporting a sequence of spin states evolving in time from one distant object onto another. The teleportation protocol is applicable to other important systems, such as mechanical oscillators coupled to light or cold spin ensembles coupled to microwaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call