Abstract
The simulation of deterministic pushdown automata defined over a one-letter alphabet by finite state automata is investigated from a descriptional complexity point of view. We show that each unary deterministic pushdown automaton of size s can be simulated by a deterministic finite automaton with a number of states that is exponential in s. We prove that this simulation is tight. Furthermore, its cost cannot be reduced even if it is performed by a two-way nondeterministic automaton. We also prove that there are unary languages for which deterministic pushdown automata cannot be exponentially more succinct than finite automata. In order to state this result, we investigate the conversion of deterministic pushdown automata into context-free grammars. We prove that in the unary case the number of variables in the resulting grammar is strictly smaller than the number of variables needed in the case of nonunary alphabets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Foundations of Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.