Abstract
In this paper we show a new way of constructing deterministic polynomial-time approximation algorithms for computing complex-valued evaluations of a large class of graph polynomials on bounded degree graphs. In particular, our approach works for the Tutte polynomial and independence polynomial, as well as partition functions of complex-valued spin and edge-coloring models. More specifically, we define a large class of graph polynomials $\mathcal C$ and show that if $p\in \cal C$ and there is a disk $D$ centered at zero in the complex plane such that $p(G)$ does not vanish on $D$ for all bounded degree graphs $G$, then for each $z$ in the interior of $D$ there exists a deterministic polynomial-time approximation algorithm for evaluating $p(G)$ at $z$. This gives an explicit connection between absence of zeros of graph polynomials and the existence of efficient approximation algorithms, allowing us to show new relationships between well-known conjectures. Our work builds on a recent line of work initiated by. Barvinok, which provides a new algorithmic approach besides the existing Markov chain Monte Carlo method and the correlation decay method for these types of problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.