Abstract

In this paper, a deep reinforcement learning-based robust control strategy for quadrotor helicopters is proposed. The quadrotor is controlled by a learned neural network which directly maps the system states to control commands in an end-to-end style. The learning algorithm is developed based on the deterministic policy gradient algorithm. By introducing an integral compensator to the actor-critic structure, the tracking accuracy and robustness have been greatly enhanced. Moreover, a two-phase learning protocol which includes both offline and online learning phase is proposed for practical implementation. An offline policy is first learned based on a simplified quadrotor model. Then, the policy is online optimized in actual flight. The proposed approach is evaluated in the flight simulator. The results demonstrate that the offline learned policy is highly robust to model errors and external disturbances. It also shows that the online learning could significantly improve the control performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.