Abstract

Precise spatiotemporal sequences of neuronal discharges (i.e., intervals between epochs repeating more often than expected by chance), have been observed in a large set of experimental electrophysiological recordings. Sensitivity to temporal information, by itself, does not demonstrate that dynamics embedded in spike trains can be transmitted through a neural network. This study analyzes how synaptic transmission through three archetypical types of neurons (regular-spiking, thalamo-cortical and resonator), simulated by a simple spiking model, can affect the transmission of precise timings generated by a nonlinear deterministic system (i.e., the Zaslavskii mapping in the present study). The results show that cells with subthreshold oscillations (resonators) are very sensitive to stochastic inputs, and are not a good candidate for transmitting temporally coded information. Thalamo-cortical neurons may transmit very well temporal patterns in the absence of background activity, but jitter accumulates along the synaptic chain. Conversely, we observed that cortical regular-spiking neurons can propagate filtered temporal information in a reliable way through the network, and with high temporal accuracy. We discuss the results in the general framework of neural dynamics and brain theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.