Abstract

Stochastic optimization approaches benefit from random variance to produce a solution in a reasonable time frame that is good enough for solving the problem. Compared with them, deterministic optimization methods feature faster convergence rates and better reproducibility but may get stuck at a local optimum that is insufficient to solve the problem. In this paper, we propose a group-based deterministic optimization method, which can efficiently achieve comparable performance to heuristic optimization algorithms, such as particle swarm optimization. Moreover, the weighted sum method (WSM) is employed to further improve our deterministic optimization method to be multi-objective optimization, making it able to seek a balance among multiple conflicting circuit performance metrics. With a case study of three common analog circuits tested for our optimization methodology, the experimental results demonstrate that our proposed method can more efficiently reach a better estimation of the Pareto front compared to NSGA-II, a well-known multi-objective optimization approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.