Abstract

Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.