Abstract

AbstractWe show how to sample uniformly within the three‐sided region bounded by a circle, a radial ray, and a tangent, called a “chock.” By dividing a 2D planar rectangle into a background grid, and subtracting Poisson disks from grid squares, we are able to represent the available region for samples exactly using triangles and chocks. Uniform random samples are generated from chock areas precisely without rejection sampling. This provides the first implemented algorithm for precise maximal Poisson‐disk sampling in deterministic linear time. We prove O(n · M(b) log b), where n is the number of samples, b is the bits of numerical precision and M is the cost of multiplication. Prior methods have higher time complexity, take expected time, are non‐maximal, and/or are not Poisson‐disk distributions in the most precise mathematical sense. We fill this theoretical lacuna.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.