Abstract
In this paper, we investigate the approximation of completely resonant nonlinear wave systems via deterministic learning. The plants are distributed parameter systems (DPS) describing homogeneous and isotropic elastic vibrating strings with fixed endpoints. The purpose of the paper is to approximate the infinite-dimensional dynamics, rather than the parameters of the wave systems. To solve the problem, the wave systems are first transformed into finite-dimensional dynamical systems described by ordinary differential equation (ODE). The properties of the finite-dimensional systems, including the convergence of the solution, as well as the dominance of partial system dynamics according to point-wise measurements, are analyzed. Based on the properties, second, by using the deterministic learning algorithm, an approximately accurate neural network (NN) approximation of the the finite-dimensional system dynamics is achieved in a local region along the recurrent trajectories. Simulation studies are included to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.