Abstract

It has been shown that many networks associated with complex systems are small-world (they have both a large local clustering coefficient and a small diameter) and also scale-free (the degrees are distributed according to a power law). Moreover, these networks are very often hierarchical, as they describe the modularity of the systems that are modeled. Most of the studies for complex networks are based on stochastic methods. However, a deterministic method, with an exact determination of the main relevant parameters of the networks, has proven useful. Indeed, this approach complements and enhances the probabilistic and simulation techniques and, therefore, it provides a better understanding of the modeled systems. In this paper we find the radius, diameter, clustering coefficient and degree distribution of a generic family of deterministic hierarchical small-world scale-free networks that has been considered for modeling real-life complex systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.